Marked Length Spectrum Rigidity in Nonpositive Curvature with Singularities

نویسنده

  • DAVID CONSTANTINE
چکیده

Combining several previously known arguments, we prove marked length spectrum rigidity for surfaces with nonpositively curved Riemannian metrics away from a finite set of cone-type singularities with cone angles > 2π. With an additional condition, we can weaken the requirement on one metric to ‘no conjugate points.’

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature

The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...

متن کامل

A Brief Summary of Otal’s Proof of Marked Length Spectrum Rigidity

We outline Otal’s proof of marked length spectrum rigidity for negatively curved surfaces. We omit all technical details, and refer the interested reader to the original [Ota90] or the course notes [Wil] for details, and to [Cro90] for different approach. (Actually the course notes [Wil] combine the approaches in [Ota90,Cro90].) The author thanks Amie Wilkinson for explaining this proof to him....

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Lectures on Marked Length Spectrum Rigidity (preliminary Version)

Let M be a closed Riemannian manifold whose sectional curvatures are all negative, and denote by C the set of free homotopy classes of closed curves in M . Negative curvature implies that in each free homotopy class, there is a unique closed geodesic. This defines a marked length spectrum function ` : C → R>0 which assigns to the class g the length `(g) of this closed geodesic. Burns and Katok ...

متن کامل

A Rigidity Theorem for non-Vacuum Initial Data

In this note we prove a theorem on non-vacuum initial data for general relativity. The result presents a “rigidity phenomenon” for the extrinsic curvature, caused by the nonpositive scalar curvature. More precisely, we state that in the case of asymptotically flat non-vacuum initial data if the metric has everywhere non-positive scalar curvature then the extrinsic curvature cannot be compactly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017